最短路算法-迪杰斯特拉算法
in Algorithm Pageviews
对于稠密图使用普通的dijkstra算法;对于稀疏图使用堆优化版的dijkstra算法。
Dijkstra算法
使用场景:
- 稠密图
- 所有边的权值均是正值
题目举例:
给定一个 n
个点 m
条边的有向图,图中可能存在重边和自环,边权均是正值。
求1
号点到n
号点的最短距离,如果无法找到1
到n
的路径,则输出 -1
。
算法思路:临接矩阵
#include <bits/stdc++.h>
constexpr int N = 510;
constexpr int INF = 0x3f3f3f3f;
int g[N][N];
int dist[N];
bool vis[N];
int n = 0;
int m = 0;
int dijkstraI()
{
memset(dist, 0x3f, sizeof(dist));
dist[1] = 0;
for (int i = 0; i < n; i++) {
int t = 0;
for (int j = 1; j <= n; j++) {
if (!vis[j] && (dist[t] > dist[j])) {
t = j;
}
}
vis[t] = true;
for (int k = 1; k <= n; k++) {
dist[k] = min(dist[k], dist[t] + g[t][k]);
}
}
return dist[n] == INF ? -1 : dist[n];
}
int main()
{
cin >> n >> m;
memset(g, 0x3f, sizeof(g));
for (int i = 0; i < m; i++) {
int a = 0, b = 0, w = 0;
cin >> a >> b >> w;
g[a][b] = min(g[a][b], w)
}
cout << dijkstraI();
return 0;
}
堆优化的Dijkstra算法
使用场景:
- 稀疏图
- 所有边的权值均是正值
算法思路:邻接表->BFS
#include <bits/stdc++.h>
int h[N];
int w[N];
int e[N];
int ne[N];
int dist[N];
int vis[N];
int idx = 0;
int n = 0;
int m = 0;
constexpr int N = 150010;
constexpr int INF = 0x3f3f3f3f;
// 数组模拟链表
void add(int k, int x, int w)
{
e[idx] = x;
w[idx] = w;
ne[idx] = h[k];
h[k] = idx++;
}
int dijkstraII()
{
memset(dist, 0x3f, sizeof(dist));
dist[1] = 0;
using PII = std::pair<int, int>;
std::priority_queue<PII, vector<PII>, std::greater<PII>> heap;
heap.push({0, 1});
while (!heap.empty()) {
auto [dis, ver] = heap.top();
heap.pop();
if (vis[ver]) {
continue;
}
vis[ver] = true;
for (int i = h[ver]; i != -1; i = ne[i]) {
int j = e[i];
if (dist[j] > dis + w[i]) {
dist[j] = dis + w[i];
heap.push({dist[j], j});
}
}
}
return (dist[n] == INF) ? -1 : dist[n];
}
int main()
{
cin >> n >> m;
memset(h, -1, sizeof(h));
for (int i = 0; i < m; i++) {
int a = 0, b = 0, c = 0;
cin >> a >> b >> c;
add(a, b, c);
}
cout << dijkstraII();
return 0;
}