最短路算法-迪杰斯特拉算法

use dijkstra easily!

对于稠密图使用普通的dijkstra算法;对于稀疏图使用堆优化版的dijkstra算法。

Dijkstra算法

使用场景:

  • 稠密图
  • 所有边的权值均是正值

题目举例:

给定一个 n个点 m条边的有向图,图中可能存在重边和自环,边权均是正值。

1号点到n号点的最短距离,如果无法找到1n的路径,则输出 -1

算法思路:临接矩阵

#include <bits/stdc++.h>

constexpr int N = 510;
constexpr int INF = 0x3f3f3f3f;
int g[N][N];
int dist[N];
bool vis[N];

int n = 0;
int m = 0;

int dijkstraI()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    for (int i = 0; i < n; i++) {
        int t = 0;
        for (int j = 1; j <= n; j++) {
            if (!vis[j] && (dist[t] > dist[j])) {
                t = j;
            }
        }

        vis[t] = true;
        for (int k = 1; k <= n; k++) {
            dist[k] = min(dist[k], dist[t] + g[t][k]);
        }
    }
    return dist[n] == INF ? -1 : dist[n];
}

int main()
{
    cin >> n >> m;
    memset(g, 0x3f, sizeof(g));
    for (int i = 0; i < m; i++) {
        int a = 0, b = 0, w = 0;
        cin >> a >> b >> w;
        g[a][b] = min(g[a][b], w)
    }

    cout << dijkstraI();
    return 0;
}

堆优化的Dijkstra算法

使用场景:

  • 稀疏图
  • 所有边的权值均是正值

算法思路:邻接表->BFS

#include <bits/stdc++.h>

int h[N];
int w[N];
int e[N];
int ne[N];
int dist[N];
int vis[N];
int idx = 0;

int n = 0;
int m = 0;
constexpr int N = 150010;
constexpr int INF = 0x3f3f3f3f;
// 数组模拟链表
void add(int k, int x, int w)
{
    e[idx] = x;
    w[idx] = w;
    ne[idx] = h[k];
    h[k] = idx++;
}

int dijkstraII()
{
    memset(dist, 0x3f, sizeof(dist));
    dist[1] = 0;
    using PII = std::pair<int, int>;
    std::priority_queue<PII, vector<PII>, std::greater<PII>> heap;
    heap.push({0, 1});

    while (!heap.empty()) {
        auto [dis, ver] = heap.top();
        heap.pop();
        if (vis[ver]) {
            continue;
        }

        vis[ver] = true;
        for (int i = h[ver]; i != -1; i = ne[i]) {
            int j = e[i];
            if (dist[j] > dis + w[i]) {
                dist[j] = dis + w[i];
                heap.push({dist[j], j});
            }
        }
    }
    return (dist[n] == INF) ? -1 : dist[n];
}

int main()
{
    cin >> n >> m;
    memset(h, -1, sizeof(h));
    for (int i = 0; i < m; i++) {
        int a = 0, b = 0, c = 0;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    cout << dijkstraII();
    return 0;
}